Implicit differentiation of a function of two or more variables

 Goal: find the derivative of an implicit function of two or more variables.Let’s consider the function defined by the ellipse  x² + 3y² + 4y – 4 = 0  Let’s find its derivative. This is the implicit function of an ellipse defined by the following graph:  Let’s find the derivative of this function by taking the derivative of both sides:  This last expression of the derivative is the simplification of dy/dx = -2x/6y + 4We can notice that the numerator is the partial derivative of the function f(x,y) = 0 with respect to x. The denominator is the partial derivative of f with respect to y. This fact leads to the following theorem:Theorem Suppose that the function z = f(x,y) defines y implicitly as a function y = g(x) via the equation f(x,y) = 0, then provided  If the equation f(x, y, z) = 0 defines z implicitly as a function  differentiable of x and y, then Examplea. Calculate dy/dx if y is expressed implicitly as a function of x via the equation 3x² – 2xy + y² + 4x-6y – 11 = 0. What is the equation of the tangent line to the graph of this curve at point (2, 1)?b’ Calculate ẟz/ẟx and ẟz/ẟy givenSolutionLet’s write f(x, y) = 3x² – 2xy + y² + 4x-6y – 11 = 0 and calculate ẟf/ẟx and ẟf/ẟyẟf/ẟx = 6x – 2y + 4  ẟf/ẟy = -2x + 2y – 6The derivative is given by:The slope of the tangent line at the point (2, 1) is given by:The equation of the tangent line is given by:This is the graph of the rotated ellipse represented by the equation 3x² – 2xy + y² + 4x-6y – 11 = 0b. We have  Let’s calculate the partial derivatives of f with respect to x, y and z.Finally let’s calculate  ẟz/ẟx and ẟz/ẟy:PracticeFind the derivative dy/dx of the function y defined implicitly as a function of x and y by the function What is the equation of the tangent line to the graph of this curve at point (3,2)?

LEAVE A REPLY

Please enter your comment!
Please enter your name here

More like this

Mortgage Rates Could Fall Another Half Point Just from...

It’s been a pretty good year so far for mortgage rates, which topped out at around 8%...
SAT Math Videos - Part 8 (Calculator)

SAT Math Videos (Part 5

Problem 1 :The value of stock is going up by 200% every hour. Which of the following...
Significant Figure Rules

Significant Figure Rules – The Mathematics Master