Solving Problems Using Vieta’s Formula

Solving Problems Using Vieta’s Formula


Posted: September 9, 2024 in Mathematics
Tags: math, Math Contest, Mathematics, MathOlympiad

Problem:

Solving Problems Using Vieta’s Formula

Solution:

By Vieta’s formula,

\alpha+\beta+\gamma=1, \quad \alpha\beta+\beta\gamma+\gamma\alpha=0, \quad \alpha\beta\gamma=2

Consider the following,

(\alpha+\beta+\gamma)^2 = \alpha^2+\beta^2+\gamma^2+2(\alpha\beta+\beta\gamma+\gamma\alpha)

hence,

\alpha^2+\beta^2+\gamma^2=1

Now, consider the following two identities,

(\alpha^2+\beta^2+\gamma^2)^2 = \alpha^4+\beta^4+\gamma^4+2(\alpha^2\beta^2+\beta^2\gamma^2+\gamma^2\alpha^2)

(\alpha\beta+\beta\gamma+\gamma\alpha)^2=\alpha^2\beta^2+\beta^2\gamma^2+\gamma^2\alpha^2+2\alpha\beta\gamma(\alpha+\beta+\gamma)

and hence the following,

\alpha^2\beta^2+\beta^2\gamma^2+\gamma^2\alpha^2 = 0-2(2)(1) = -4

\alpha^4+\beta^4+\gamma^4 = 1 -2(-4)=9

Now,

\alpha^5+\beta^5+\gamma^5 = \alpha^3\alpha^2 + \beta^3\beta^2 + \gamma^3\gamma^2

= (\alpha^2+2)\alpha^2 + (\beta^2+2)\beta^2 + (\gamma^2+2)\gamma^2

= \alpha^4+\beta^4+\gamma^4+2(\alpha^2+\beta^2+\gamma^2)

= 9 + 2(1) = 11


LEAVE A REPLY

Please enter your comment!
Please enter your name here

More like this

Reintroducing the IMplementation Reflection Tool

By Claire Neely, Senior Implementation Specialist Illustrative Mathematics’ redesigned IMplementation Reflection Tool (IRT) is a powerful, non-evaluative resource...

Unizor – Creative Mind through Art of Mathematics: Geometry+...

https://www.youtube.com/watch?v=hAXtrAWNVuI Notes to a video lecture on http://www.unizor.com Geometry+ 10Problem AGiven two parallel lines and a segment AB...

A Little AIME Problem | mathgarage

A Little AIME Problem Posted: May 16, 2022 in Mathematics Tags: AIME, math, Math Contest Solution In general, let By Pythagoras Identity, Solve this...